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Abstract

In this paper, we study ruled surfaces in a three-dimensional Minkowski space with pointwise
1-type Gauss map and obtain the complete classification theorems for those. We also obtain a new
characterization of minimal ruled surfaces in a three-dimensional Minkowski space. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Geometers have beeninterested in studying minimal surfaces for alongtime. In particular,
the only minimal ruled surfaces in a three-dimensional Euclidean spaeee the planes
and the helicoids. In 1983, Kobayashi [15] classified space-like ruled minimal surface in a
three-dimensional Minkowski spa@, and de Woestijne [16] extended it to the Lorentz
version in 1988.

In late 1970s Chen [5,6] introduced the notion of Euclidean immersions of finite type.
Essentially these are submanifolds whose immersion&fites constructed by making use
of a finite number of£™-valued eigenfunctions of their Laplacian. The first results on this
subject have been collected in the book [6]; for a recent survey, see [7]. Many works were
done to characterize or classify submanifolds in terms of finite type. In a framework of
the theory of finite type, Chen and Piccinni [8] made a general study on submanifolds of
Euclidean spaces with finite type Gauss map and classified compact surfaces of 1-type Gauss
map. Several geometers also studied submanifolds of Euclidean spaces or pseudo-Euclidean
spaces with finite type Gauss map (cf. [1,3,4,9,14], etc.). On the other hand, Baikoussis and
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Blair [2] studied ruled surfaces in Euclidean 3-sp&éesuch that its Gauss mapsatisfies
a special condition,

AG =AG, A e Mat@3,R), (1.1)

where A denotes the Laplacian of the surface with respect to the induced metric and
Mat(3, R) is the set of 3x 3-real matrices. Also, for the Lorentz version Choi [9] in-
vestigated ruled surfaces with non-null base curve satisfying the condition (1.1) in a three-
dimensional Minkowski spacEf. Furthermore, Abs et al., [1] studied ruled surfaces in
a three-dimensional Minkowski spa@ with null rulings satisfying the condition (1.1).
In such cases, it is well known that all surfaces obtained in [1,2,9] satisfy the condition
AG =AG, reR.

However, there may be some other ruled surfaces satistyitig= fG for some smooth
function f, for example, see Section 3. Relating with such matters, we raise the following
problem:

Problem. Classify all submanifoldsin an m-dimensional Euclidean sfEtéor Minkowski
spacek]’) satisfying the condition

AG = fG 1.2)
for some function f.

A submanifoldd in E™ (or E7') is said to be opointwise 1-type Gauss méjt satisfies
(1.2).
For the above problem, Choi and Kim [10] recently proved the following theorem:

Theorem A. The ruled surfaces iB® with pointwise 1-type Gauss map are an open portion
of the plane, the circular cylinder and the helicoid.

In this article, we investigate the Lorentz version of the above theorem, and give a com-
plete classification of ruled surfaces with pointwise 1-type Gauss map.

On the other hand, Kim et al. [13] completely classified ruled surfacg$ iwith 1-type
Gauss map.

Throughout this paper, we assume that all objects are smooth and all surfaces are con-
nected unless otherwise mentioned.

2. Preliminaries

An m—dimensional vector spade = L7 with scalar product, ) of index 1 is called a
Lorentz vector spacén particular, ifL = ET', m > 2, itis called aMinkowski m-spaceA
vectorX of L7 is said to bespace-likdf (X, X) > 0 orX = 0, time-likeif (X, X) < 0 and
light-like or null'if (X, X) = 0 andX # 0. A time-like or light-like vector inL’' is said
to becausal For the Lorentz vector space the next two lemmas are well known and useful
(See [12]).
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Lemma 2.1. There are no causal vectors i’ orthogonal to a time-like vector.

Lemma 2.2. Two light-like vectors are orthogonal if and only if they are linearly dependent.

Let X = (X;) andY = (¥;) be the vectors in a three-dimensional Lorentz vector space
L?, then the scalar product &f andY is defined by

(X,Y) = —-Xa1¥1+ XoY2 + X3¥s, (2.1)
which is calleda Lorentz productFurthermore, a Lorentz cross prodicix Y is given by
X xY = (—XoY3+ X3Yo, X3Y1 — X1Y3, X1Y2 — XoY1). (2.2)

Then it is easily seen that the Lorentz cross product satisfies the following.

Lemma 2.3. For vector fields X,Y,Z and W ib?,

X xY =0« XandY are linearly dependent (2.3)
XxY=-YxX. (2.4)
(XxY,Z)=(Y x Z, X). (2.5)
(XxY,X)=(XxY,Y)=0. (2.6)
(X XY, Zx W)= (X, W\Y, Z) — (X, Z){Y, W). (2.7)

Let M be a pseudo-Riemannian surface in a three-dimensional Minkowski Eﬁa&”@e
mapG : M — Q2%(e) C Ei’ which sends each point @f to the unit normal vector ta/
at the point is called th&auss mamf surfaceM, wheree (= +1) denotes the sign of the
vector fieldG and Q?(¢) is a 2-dimensional space form as follows:
) S2()  in B}, if e=1;
0°(e) = ) .
H%(=1) in Ej, if e=-1

Itis well known that in terms of local coordinatés } of M the Laplacian can be written as
1 3 ;0
- _ E : ./ S 2.8
m,.jaxl( i’ 57) @

whereG = det(g;;), (¢/) = (gij)~ and(g;;) are the components of the metricifwith
respect tdx;}.

Now, we define a ruled surfade in a three-dimensional Minkowski spaﬁé. Let! be
an open interval in the real lifR. Leta = «(s) be a curve irE? defined o/ andg = B(s)
a transversal vector field aloag For an open interval of R we have the parametrization
for M

x =x(s,t) = a(s) +1B(s), sel, tel. (2.9)



194 Y.H. Kim, D.W. Yoon/ Journal of Geometry and Physics 34 (2000) 191-205

The curvex = a(s) is called abase curveand = B(s) adirector curve In particular, if
B is constant, the ruled surface is said todgéndrical, andnon-cylindricalotherwise.

First of all, we consider that the base cutwés space-like or time-like. In that case, the
director curve can be naturally chosen so that it is orthogonal t&urthermore, we have
ruled surfaces of five different kinds according to the character of the baseccandthe
director curveg as follows: If the base curve is space-like or time-like, then the ruled
surfaceM is said to be of typ@/, or typeM_, respectively. Also, the ruled surface of type
M can be divided into three types. Whgns space-like, it is said to be of tyﬁw}r or
MJZr if B’ is non-null or light-like, respectively. Whefis time-like, 8" must be space-like
according to Lemma 2.1. In this cas¥,said to be of typer’r. On the other hand, for the
ruled surface of typ@/_, itis also said to be of typ& L or M2 if g’ is non-null or light-like,
respectively. Note that in the case of tyfe the director curves is always space-like (cf.
[9,14]). The ruled surface of typ#* or M2 (resp.M3, ML or M?) is clearly space-like
(resp. time-like).

But, if the base curve is a light-like curve and the vector fiefglalonge is a light-like
vector field, then the ruled surfadé is called anull scroll. In particular, a null scroll with
Cartan frame is said to beBascroll[11]. It is also a time-like surface.

3. Some examples

Before going into the study of ruled surfaces with the condittod = fG, let us
see some examples of surfacesE@satisfying that condition. They will be parts of our
classifications of ruled surfaces.

Example 3.1(Helicoid of the 1st kind). For constanisandb with |a| > |b| > 0, we
consider the surfac¥ in Ef defined by

x(s,t) = (—bs (¢t + a) coss, (¢t + a) sins),

wherer < min(—a — b, —a +b) ort > max(—a — b, —a + b).
This parametrization defines a non-cylindrical ruled surface of Méein E3, which is
called a helicoid of the 1st kind as space-like surface. In this case, the Gaussisngigen

by

1 .
G = —2(t + a, bsins, —b COSs).

ViE+a2—b
The LaplacianAG of the Gauss mag is obtained as
—2h? G
((t+a)?2—b22 "

Example 3.2(Helicoid of the 2nd kind). For constardsandb with |b| > |a|, we consider
the surfaceV in E3 defined by
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x(s, 1) = ((t + a) sinhs, (t + a) coshs, —b9),
where mi—a — b, —a +b) <t < max(—a — b, —a + b).

This parametrization defines a non-cylindrical ruled surface of M@a’n E3, which is
called a helicoid of the 2nd kind as space-like surface. The Gaus&nfiaipit is given by

1
G =———(—bcoshs, —bsinhs, t +a)
b2 — (t + a)?
and the Laplacial\ G of the Gauss mag is derived as
~2b?
AG =

(b? — (t +a)?)? ¢

Example 3.3(Conjugate of Enneper’s surface of the 2nd kind). The surfa@% ahefined
by
(1 13 1,
x(s,t) = <6s +ts, 6s ts+ s, 2s +t>

is a non-cylindrical ruled surface of typei, which is said to be a conjugate of Enneper’s
surface of the 2nd kind as space-like surface. The Gausshispbtained by

G = ;(—252+t—1, 1-52—1‘,—s>.
J2+i\ 2 2
The LaplaciamAG of the Gauss mag can be expressed as
AG=——2 g r< =
(=2t + 12 2

Example 3.4(Helicoid of the 1st kind). For constanisandb satisfying|a| < |b|, we
consider the surfac¥ in Ef defined by

x(s, 1) = (=bs (r + a) coss, (t + a) sins),

where mi—a — b, —a + b) <t < maX(—a — b, —a + b).

This parametrization defines a non-cylindrical ruled surface of fypein E3, which is
called a helicoid of the 1st kind as time-like surface. Similarly to Example 3.1, we can get
the LaplaciamlAG of the Gauss mag

—2p?

R

Example 3.5(Helicoid of the 2nd kind). For constantsandb with |a| > |b| > 0, we
consider the surfac# in E3 defined by

x(s, 1) = ((t + a) sinhs, (t + a) coshs, —b9),

wheret < min(—a — b, —a + b) ort > max(—a — b, —a + b).
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This parametrization defines a non-cylindrical ruled surface of iypein E2, which is
said to be a helicoid of the 2nd kind as time-like surface. The Laplati@rof the Gauss
mapG is determined by

—2p? G
((t+a)2—b22 "

Example 3.6(Helicoid of the 3rd kind). For constantsandb satisfyingla| < |b|, we
consider the surfac¥ in Ef defined by

x(s, 1) = ((t + a) coshs, bs (¢t + a) sinhs),

where min(—a — b, —a +b) <t < max(—a — b, —a + b).

This parametrization defines a non-cylindrical ruled surface of Mﬁ_ein E3, which is
called a helicoid of the 3rd kind as time-like surface. In this case, the Lapladiaof the
Gauss maj can be expressed as

2b?

T aran”

Example 3.7(Conjugate of Enneper’s surface of the 2nd kind). The surfa@% ahefined
by

x(s,t) = }s3+t8+s —}sg—ts }s2+t
’ 6 "6 2

is a non-cylindrical ruled surface of tygé2, which is said to be a conjugate of Enneper’s
surface of the 2nd kind as time-like surface. The Laplagighof the Gauss mag is given

by
G = =2 G t 1
T @2 +12 2

Example 3.8(B-scroll, cf. [1]). Lety = y(s) be alight-like curve irEf with Cartan frame
{A, B, C},i.e.,A, B, C are vector fields along in Ef satisfying the following conditions:

(A,A)=(B,B)=0, (A,B)=1 (A,C)=(B,C)=0, (C,C)=1,
vy =A, C' =-aA—k(s)B,
a being a constant ands) a function vanishing nowhere.

Letx = x(s, 1) = y(s) + tB(s). Then, it is a time-like surface i3, which is called a
B-scroll[11]. The Gauss mag is given by

G(s,t) = —atB(s) + C(s).

As for the shape operatsrwe have that

3G 3G
= — = —ax — k(s)x;, G;i= — = —ax

G, =
y ds ot
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So S is written down, relative to the usual frame;, x;}, as

a 0
k(s) a)’

Thus, it has constant mean curvatare= a and constant Gaussian curvatite= a?2.
Furthermore, the LaplaciahG of the Gauss mag can be expressed as

AG = \G, \=—24°

On the other hand, B-scroll is minimal if and only if it is flat.

Remarks.
1. All surfaces given in the above examples are congruence to surfaces described in [16].
2. There are surfaces satisfying the condition (1.2) as cylindrical ruled surfaces. For ex-
ample, (1) a non-degenerated plane, (2) a hyperbolic cyliidex R, (3) a Lorentz
circular cylinderSt x R, (4) a circular cylindeR} x St of index 1(for details, see [9]).

4. Classification theorems

In this section, we will classify the ruled surfaces in terms of pointwise 1-type Gauss
map.

Suppose that the ruled surfaddssatisfy the condition (1.2). Then, the tangential com-
ponent ofAG vanishes, i.e.,

AG — ¢(AG, G)G = 0. (4.1)

We divide ruled surfaces ﬂEf into three typical types according to the character of the base
curvea and the vector fiel@, i.e., cylindrical ruled surfaces, non-cylindrical ruled surfaces
and null scrolls.

Theorem 4.1. The only cylindrical ruled surfaces with space-like or time-like base curve
in a three-dimensional Minkowski space with pointwise 1-type Gauss map are an open part
of one of the following surfaces:

1. a Euclidean plane,

2. a Minkowski plane,

3. the hyperbolic cylinder,

4. the Lorentz circular cylinder,

5. the circular cylinder of indeX.

Proof. Let M be a cylindrical ruled surface i3, i.e.,a = a(s) is a space-like or time-like
smooth curve ang = B(s) a space-like or time-like unit constant vector field alengr
orthogonal tax ands the arc-length of. Then,M is parametrized by

x =x(s,t) =a(s)+18
such thato/, @’) = ¢1(= 1), (&/, B) = 0, (B, B) = e2(= £1).
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Also the cylindrical ruled surfac#f is only of typeM?*, M3 or M*.

In order to prove the theorem, we split it into two cases.

Case 1Let M be a cylindrical ruled surface of typlﬁ!}L orM?l,ie. g2 = 1. Performinga
Lorentz transformation, we may assume fhat (0, 0, 1) withoutloss of generality. Than
may be regarded as the plane curge) = (@1(s), a2(s), 0). The Gauss map af is defined
by G = o' x B = (—ap, —aj, 0), where the prime denotes the derivative with respect to
s. Since the induced pseudo-Riemannain metric is givetxhy,) = €1, (x5, x;) = 0 and
(x;, x;) = 1, the Laplaciam\ G of the Gauss ma@ is obtained byAG = (e105’, e1017", 0).
Then, (1.2) implies that we have the following system of differential equations:

e10 () = — f (s, Datp(s), e101 (s) = — f (s, Dy (s). (4.2)

From this, we see that is a function ofs only. In order to solve the above equations we
first consider the surface of typeM?,i.e.,e1 = 1. Sowe gete/, /) = —a’% +a/§ =1
Accordingly, we may puij anda; as follows:

oy = sinhg, ap = coshy,
wheref = 0(s). Putting these into (4.2), we have

0" sinh6 + (9’2 4 f(s, 1)) cosh = 0, (0"% + f(s, 1)) sinhf 4 6" coshy = 0,
which implies

9" =0, f(s, 1) =—0"2.

Therefore,f is a constant. Using Proposition 3.1 of [9], we conclude tWais an open
portion of a Euclidean plane and the hyperbolic cylinder.

Next, we are concerned with the ruled surfadeof type M1, i.e.,e; = —1. Since
(@' 0’y = —a'? + &'3 = —1, we may put
o) = coshy, o, = sinhg

wheref = 6(s). By the similar discussion as above, we can get

0% — f(s, 1)) sinhd + 6" coshp = 0, 6" sinhg + (0’2 — f(s, 1)) coshv = 0,
from which,

0" =0, f(s, 1) =0".

Thus, f is also a constant. It shows th#tt is an open portion of a Minkowski plane and
the Lorentz circular cylinder according to Proposition 3.1 of [9].

Case 2 Let M be a cylindrical ruled surface of tpri, i.e.,e1 = 1l ep = —1. As
in the previous case, by an appropriate rigid motion, we may asgugse(1, 0, 0) and
a(s) = (0, a2(s), az(s)) without loss of generality. The Gauss mé&pof M is given by
G = (0, a3, —a5) and the Laplaciam G of the Gauss may; is obtained byAG =
(0, —af’, ay"). Furthermore, the condition (1.2) implies

0y = —f(s,Da3, oy =—f(s, N (4-3)
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Since(o/, ') = a'3 + '3 = 1, we may put
o) = COSH, as = sing

wheref = 6(s). Similarly to Case 1, we can obtain théis a constant. Thug/ is an open
part of a Minkowski plane and the circular cylinder of index 1 according to Proposition 3.1
of [9]. O

Theorem 4.2. Let M be a non-cylindrical ruled surface with space-like or time-like base
curve in a three-dimensional Minkowski space. Then, the Gauss map is of pointwise 1-type
if and only if M is an open part of one of the following surfaces:

1. the helicoid of thelst kind as space-like or time-like surface,

2. the helicoid of the2nd kind as space-like or time-like surface,

3. the helicoid of the8rd kind as space-like or time-like surface,

4. the conjugate of Enneper’s surfaces of #ma kind as space-like or time-like surface.

Proof. We consider two cases separately.
Case 1Let M be a non-cylindrical ruled surface of one of the three typis Mi or
M* according to the character of the base cunand the director curvg.
1. @ = a(s) is space-like an@ = B(s) is space-like,
2. a = «a(s) is space-like an@ = B(s) is time-like,
3. a = a(s) is time-like and8 = B(s) is space-like,
wheres is the arc-length of the director curge
We also express the ruled surfafeis parametrized by, up to a rigid motion,

x =x(s,1) = a(s) +18(s) (4.4)

such that{a/, B) = 0, (B, B) = s2(= £1) and(B’, B’) = e3(= +1). And we have the
natural framgx,, x;} given byx, = o’ + B’ andx, = 8. For later use, we define smooth
functionsg, u andv as follows:

q = ”xS”Z = 84<x31 xS)s u = <a/7 ﬂ/>7 V= ((X/, a/>7 (45)

wheres4(= +£1) is the sign of the vector,. Then, the induced pseudo-Riemannain metric
on M is obtained by(xy, x;) = €aq, (x5, x;) = 0 and(x;, x;) = 2. If we make use of (2.8)
together with such functiong, u andv, the Laplaciam of M can be expressed as follows
[14]:

192 11d8q 0 2 119q d
A=—-gyl-——S—-—z5——] - —+=———]. 4.6

84((] 952 2q2ds 83) 82<3t2+2q ot 8t) (4.6)
Furthermore, the Gauss mépof M is obtained by

G- (#) X x 3 = g Y2(A +1B) (4.7)

[lovs > x|

and the smooth functioq is given by

q = ealeat® + 2ut+v), (4.8)
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where we pufA = o’ x 8 andB = B’ x B. By a straightforward computation, the Laplacain
AG of the Gauss maf with the help of (4.7) turns out to be

1 2 3

— 2¢ep(e3t + u)zq_ —eq(2u't + v/)zq_
—|—%(2u”t +v")q %G + %q75/2{28284q(—83A + UB) — 2e4q(A” +1B")
+3(2u't + V') (A’ +tB)). (4.9)

AG ={2¢e2e384q

The direct computation of the left-hand side of (4.1) gives a polynomiahiith functions
of s as the coefficients by adjusting the power of the functi@nd thus they must be zero.
we have then

B" —gg3e4a < B, B> B =0, (4.10)

A" 4 (epe3 — c8384(B”, B))A + 4e3uB’ — 3eeau’ B’ — (eou + e384(A”, B)
+ ee3e4(A, B") + 2ee4u(B, B"))B = 0, (4.11)

8e3e4UA” — Beezcau’ A’ + (8eosau — 2ee3(A”, B) — 2se3(A, B”) — 4su(B, B"))A
+(4e384v + 8e4u®) B” — £(12e4UU + 3e384v") B’ — (8epe3u® + 2e85u°
—2¢v + 6gsou’? + 2ce3(A, A”) + deu(A”, B) + 4eu(A, B")
+2¢v(B”, B))B =0, (4.12)

e4(4e3v+8u?) A" —cea(12uU + 3e30') A’ + (Aeoeav + Beoezeau’® + 26v — 2e63u°
—6eeou'? — 2ce3(A, A”) — deu(A”, B) — deu(A, B”)
—2ev(B”, B))A + 8s4uvB” — ee4(6u’v + 6uv') B’ — (ds2s384Uv
+8e264u’ — deeguv + deu’ + 6seou’v' +4cu(A, A”)+2ev(A”, B)
+2sv(A, B”)) B=0, (4.13)

16e4UvA” — ee4(12u'v + 12Uv") A’ + (16626384Uv + See3Uv — 8eu
—12ceou’v’ — 8eu(A, A”) — 4ev(A”, B) — 4ev(A, B"))A + 4eqv’B”
—6eeavv' B — (166284uv — dse3v? + deuv
+3ce20'2 + 4ev(A, A”)B = 0, (4.14)

AeavP A — Beequv' A’ + (depezeav? + deegv? — deuv — 3eeov'2 — dev(A, A”))A
—4goe4u0°B = 0. (4.15)

It follows from (4.10) that
(B",B') =0, (4.16)
i.e., (B’, B’ = c¢ for some constant. This implies

(B", B) = —c. (4.17)
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Thus, (4.10) can be rewritten in the form
B” = —ge3e4CB, (4.18)
which implies
(A, B") = geoe384CU. (4.19)
Consequently, using (4.16),(4.17),(4.18) and (4.19) we can elimiigtd” and B’ so that
(V"% = 4eau’?v) A + (Buu?v — 4ezu’vv’)B = 0, (4.20)
(Gu'vv' — 2 A + (vv'? — deu’*v?) B = 0. (4.21)

First, we suppose that and B are linearly dependent at somes . Then there are
constantsc; andkp such thatr’ — x18” = k8. By using the properties af and 8, we
getu = ez andv = 53/<f, which is a contradiction by the definition of non-vanishing
functiong. Thus,A and B are linearly independent for all From (4.20) and (4.21), we
have

V% — dequ'?v =0, (4.22)
uw'v2ud — e3v’) =0, (4.23)
2u'vy’ — w'? =0, (4.24)
W' — dequ’*0? = 0. (4.25)

Suppose that the open sub&ket {p € M|u'(p) # 0} is not empty. Eq. (4.23) gives
v =2e3ud on U, (4.26)

which implies from (4.22) thak? = e3v on . This is also a contradiction. Thud, is
empty, in other wordsy’ = 0. Furthermore, from (4.22) we also have= 0. If we take
the scalar product witlg in the Eq. (4.18)), then we havg” x g’, 8) = 0. Hence, there
are smooth functiong; andx; such that8 = «18’ + k28”. It implies thatg andg” are
parallel. Also, fromu’ = 0 andv’ = 0 we get

(", By =0, (", 'y =0. (4.27)
For the vector fields’, 8, 8’ anda”, we may put
o = k10’ + k2B’ + k3p

for «1, k2 andks are smooth functions. Using (4.27), we see thiaandg are parallel.
On the other hand, by definition the mean curvature vector fielaf M is obtained as
follows:

H = 3eag™ 2@ +18") x p.o" +18").

Sinces”, «” andg are parallel to each other, it is easily proved tHatanishes identically.
Consequently, by using the classification theorem of a ruled minimal surfmie[irs] we
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conclude that the surface of ty[z)é}r (resp.M?1) are an open part of the helicoid of the 1st

kind and the helicoid of the 2nd kind as space-like surface (resp. time-like surface), and the

surface of typeMS‘r is an open part of the helicoid of the 3rd kind. The converse is obvious.
Case 2 Let M be a non-cylindrical ruled surface of ty;zlei or M2. Then, the surface

M is parametrized by

x(s,t) = a(s) +tB(s)
suchthatg, B) =1, (&/, B) =0, (&', a’) = 1(= +1) andB’ is null.
It is easy to get the Gauss mépof the surfaceM as
1
G=—"—"—
(" +18") x Bl
We also put functiong andu as before by

(@ +18) x B.

q = 1% = ealxs. ), u=(,p),
which give
g = e4(2ut+ 1), G =q Y%A +1B), (4.28)

where we putA = o’ x 8 andB = 8’ x 8 and the region of is chosen so that > 0. The
LaplacianA of M can be expressed as [14]

110909 102 119g 8 92
Ae gy =224 9 S I ot I I 4.29
84( 242 s 85+q8s2> (Zq a1 8t+8t2> (#.29)
Using (4.28) and (4.29) we can obtain by a direct computation
AG = (—2u%q 72 + u"tq 2 — dequ'?1%q %G
+q/?{4uBq+ 3u't (A’ +1B) — ea(A” + 1B )g}. (4.30)

Suppose thaM is of pointwise 1-type Gauss map. Similarly to Case 1, using (4.1) and
(4.30) we have

eu(B, B"B = 0, (4.31)

2¢u(B, B")A — 4equ’B" + 6e4ud B’
+e(Bu'? +2u(A”, B) + 2u(A, B") + ¢1(B, B"))B = 0, (4.32)

dequP A" — Bequd A — £(3u'® + 2u(A”, B) + 2u(A, B") + £1(B, B"))A
+ 4e184UB’ — 3e18au’ B’ — (Aeau® + 2eu® + 2cu(A, A”) + se1(A”, B)
+ee1(A, B")B =0, (4.33)

Ae1eaA” — Bereau’ A — e(2u® + 2u(A, A”) + e1(A”, B) + e1(A, B")A + eaB”
— (4e1equ® + eequ® + ee1(A, A”)B = 0, (4.34)
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A" — ee1ea? + (A, A”)A —uB = 0. (4.35)

We easily see thak is non-zero everywhere. In fact, i is zero at some point, theng’
and g are parallel. It contradicts the property @fand 8’. Consider a subsét = {p €
M|(B, B")(p) # 0}. If U is not empty, from (4.31) we have= 0 oni/. And from (4.32)
we also getB, B”)B = 0 onl{, which is a contradiction o1. Thereforel{ must be empty.
Thus, we have

(B,B") = 0. (4.36)

Consequently, substituting (4.36) into (4.31), (4.32), (4.33), (4.34) and (4.35), we can elim-
inateA”, B”, A’ and B’ so that

2e1UU%A — u'?B = 0. (4.37)

We now suppose that and B are linearly dependent at somec I. Then, there are
constantsc; andk, such thate’ — k18" = «28. By using the properties @f and 8, we
can obtaine’ = «18’, which is a contradiction. Thus} and B are linearly independent
for all s. From (4.37) we show that = 0. Since(B, B”) = 0 and(B, B’) = 0, we have
(B, B"y = (B",B") =0,i.e.,B"is light-like or zero. If8” is light-like, there is a non-zero
smooth functionc such thai8” = B’ by Lemma 2.1. Hence, we haye= F(s)C, where
C = (c1, c2, c3) is a constant light-like vector field iEi and F (s) is a positive smooth
function (cf. [14]). However, there is no such vector figldsatisfying (8, 8) = 1. After
all, g’ is the zero vector. As in the previous case, if we examine the relationship among
o', B, B’ anda” we find thate” andg are parallel. Similarly to Case 1, the charactew of
andp makes the mean curvature vector fiéldvanish everywhere.

Hence, in this case, the surfaces oftypﬁﬁ(respME) is an open part of the conjugate of
Enneper’s surfaces of the 2nd kind as space-like surface (resp. time-like surface) according
to Theorems 3 and 4 of [16]. Furthermore, the converse also holds. Thus, this completes
the proof. O

Theorem4.3. Let M be a null scroll with pointwise 1-type Gauss mapin athree-dimensional
Minkowski space. Then, M is an open part of one of the following surfaces:

1. a Minkowski plane,

2. aflat B-scroll if B is light-like,

3. a non-flat B-scroll ifB” is non-null.

Proof. Leta = a(s) be a light-like curve irE? and B = B(s) be a light-like vector field
alonga. Then, the null scrolM is parametrized by

x =x(s,t) = a(s) + tB(s)

such thato/, @’) = 0, (B, B) = 0 and{(a/, B) = 1.
We have the natural framay, x;} given by

xs=o +tB, x;, =B. (4.38)



204 Y.H. Kim, D.W. Yoon/ Journal of Geometry and Physics 34 (2000) 191-205
Again, we define smooth functions « andv as follows:

q =517 = (x5, %), u=(,B), v=(BB) (4.39)
Similarly as before, the Laplacian of M can be given as follows [13]:

2 9g 0 92

A=—-2— + —— —. 4.40
asar ot o1 1ar2 (4.40)
Furthermore, the Gauss mépis determined by
1
G = (—) (xg x x;) = C +1D, (4.41)
llxs > x|l

where we puC = o’ x BandD = B’ x B.
Suppose tha¥ is of pointwise 1-type Gauss map. Then, (1.2) together with (4.40) and
(4.41) gives

2D’ + (ft — 2u — 2vt)D + fC = 0. (4.42)

Taking the scalar product witd’ and D’ in (4.42), respectively, we obtain the following
equations:

v + fot — 0% =0, (4.43)
202 —fv=0. (4.44)

Consider an open subdét= {p € M|v(p) # 0}. We suppose thdf is not empty. Then,
on a componendt of U/, we havef = 2v by (4.44). Together with (4.43), we see thés a
constant. Consequently, by continuifymust be the whole spadé. In this case, we have
null frame field{«’, B, C} in Ef satisfying the following conditions:

(¢/,a'y=(B,B)=0, (¢/,B)=1(o¢/,C)=(B,C)=0,
(C, C) = 1, Ol// = —MOl/ + <Ol//,(1/ X B)C, B/ — uB+ <Ol/ X B, B/)C,
C'=—(a' x B,B"Ya’ —{@”",a x B)B.

Using (1.2) andf = 2v, we obtain that 2 = (o’ x B, B’) is a constant. Thusy is a
B-scroll (cf. [1]).

If v is identically zero, therB’ is zero or light-like. Suppose th&' is the zero vector,
i.e., B is a constant vector. TheP = 0, which givesAG = 0. ConsequentlyM is a
Minkowski plane. If B’ is light-like, thenB’ and B are linearly dependent by Lemma 2.1.
Thus we haveD = 0, which impliesAG = 0. In that case, we see that the mean curvature
vector fieldH vanishes identically and the Gaussian curvature is also zero. Consequently,
M is a flat B-scroll (see Example 3.8). This completes the proof. O

Combining the results of Theorems 4.1, 4.2 and 4.3, we have
Theorem 4.4(Classification).Let M be a space-like ruled surface in a three-dimensional

Minkowski space. Then, the Gauss map is of pointwise 1-type if and only if M is an open
part of one of the following surfaces:
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. a Euclidean plane,

. the hyperbolic cylinder,

. the helicoid of the 1st kind,

. the helicoid of the 2nd kind,

. the conjugate of Enneper’s surface of the 2nd kind.

a b~ wWwN B

Theorem 4.5(Classification).Let M be a time-like ruled surface in a three-dimensional
Minkowski space. Then, the Gauss map is of pointwise 1-type if and only if M is an open
part of one of the following surfaces:
1. a Minkowski plane,
. the Lorentz circular cylinder,
. the circular cylinder of index,
. the helicoid of thelst kind,
. the helicoid of thend kind,
. the helicoid of the8rd kind,
. the conjugate of Enneper’s surfaces of #mel kind,
. aflat B-scroll if B’ is light-like,
. anon-flat B-scroll ifB’ is non-null.
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