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Ruled surfaces with pointwise 1-type Gauss map
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Abstract

In this paper, we study ruled surfaces in a three-dimensional Minkowski space with pointwise
1-type Gauss map and obtain the complete classification theorems for those. We also obtain a new
characterization of minimal ruled surfaces in a three-dimensional Minkowski space. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Geometers have been interested in studying minimal surfaces for a long time. In particular,
the only minimal ruled surfaces in a three-dimensional Euclidean spaceE

3 are the planes
and the helicoids. In 1983, Kobayashi [15] classified space-like ruled minimal surface in a
three-dimensional Minkowski spaceE3

1, and de Woestijne [16] extended it to the Lorentz
version in 1988.

In late 1970s Chen [5,6] introduced the notion of Euclidean immersions of finite type.
Essentially these are submanifolds whose immersion intoE

m is constructed by making use
of a finite number ofEm-valued eigenfunctions of their Laplacian. The first results on this
subject have been collected in the book [6]; for a recent survey, see [7]. Many works were
done to characterize or classify submanifolds in terms of finite type. In a framework of
the theory of finite type, Chen and Piccinni [8] made a general study on submanifolds of
Euclidean spaces with finite type Gauss map and classified compact surfaces of 1-type Gauss
map. Several geometers also studied submanifolds of Euclidean spaces or pseudo-Euclidean
spaces with finite type Gauss map (cf. [1,3,4,9,14], etc.). On the other hand, Baikoussis and
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Blair [2] studied ruled surfaces in Euclidean 3-spaceE3 such that its Gauss mapG satisfies
a special condition,

1G = AG, A ∈ Mat(3,R), (1.1)

where1 denotes the Laplacian of the surface with respect to the induced metric and
Mat(3,R) is the set of 3× 3-real matrices. Also, for the Lorentz version Choi [9] in-
vestigated ruled surfaces with non-null base curve satisfying the condition (1.1) in a three-
dimensional Minkowski spaceE3

1. Furthermore, Aĺıas et al., [1] studied ruled surfaces in
a three-dimensional Minkowski spaceE3

1 with null rulings satisfying the condition (1.1).
In such cases, it is well known that all surfaces obtained in [1,2,9] satisfy the condition
1G = λG, λ ∈ R.

However, there may be some other ruled surfaces satisfying1G = fG for some smooth
functionf , for example, see Section 3. Relating with such matters, we raise the following
problem:

Problem. Classify all submanifolds in an m-dimensional Euclidean spaceE
m (or Minkowski

spaceEm
1 ) satisfying the condition

1G = fG (1.2)

for some function f.

A submanifoldM in Em (orEm
1 ) is said to be ofpointwise 1-type Gauss mapif it satisfies

(1.2).
For the above problem, Choi and Kim [10] recently proved the following theorem:

Theorem A. The ruled surfaces inE3 with pointwise 1-type Gauss map are an open portion
of the plane, the circular cylinder and the helicoid.

In this article, we investigate the Lorentz version of the above theorem, and give a com-
plete classification of ruled surfaces with pointwise 1-type Gauss map.

On the other hand, Kim et al. [13] completely classified ruled surfaces inE
m
1 with 1-type

Gauss map.
Throughout this paper, we assume that all objects are smooth and all surfaces are con-

nected unless otherwise mentioned.

2. Preliminaries

An m–dimensional vector spaceL = Lm
1 with scalar product〈, 〉 of index 1 is called a

Lorentz vector space. In particular, ifL = Em
1 , m ≥ 2, it is called aMinkowski m-space. A

vectorX of Lm
1 is said to bespace-likeif 〈X, X〉 > 0 orX = 0, time-likeif 〈X, X〉 < 0 and

light-like or null if 〈X, X〉 = 0 andX 6= 0. A time-like or light-like vector inLm
1 is said

to becausal. For the Lorentz vector space the next two lemmas are well known and useful
(See [12]).
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Lemma 2.1. There are no causal vectors inLm
1 orthogonal to a time-like vector.

Lemma 2.2. Two light-like vectors are orthogonal if and only if they are linearly dependent.

Let X = (Xi) andY = (Yi) be the vectors in a three-dimensional Lorentz vector space
L3

1, then the scalar product ofX andY is defined by

〈X, Y 〉 = −X1Y1 + X2Y2 + X3Y3, (2.1)

which is calleda Lorentz product. Furthermore, a Lorentz cross productX × Y is given by

X × Y = (−X2Y3 + X3Y2, X3Y1 − X1Y3, X1Y2 − X2Y1). (2.2)

Then it is easily seen that the Lorentz cross product satisfies the following.

Lemma 2.3. For vector fields X,Y,Z and W inL3
1,

X × Y = 0 ⇔ X andY are linearly dependent. (2.3)

X × Y = −Y × X. (2.4)

〈X × Y, Z〉 = 〈Y × Z, X〉. (2.5)

〈X × Y, X〉 = 〈X × Y, Y 〉 = 0. (2.6)

〈X × Y, Z × W 〉 = 〈X, W 〉〈Y, Z〉 − 〈X, Z〉〈Y, W 〉. (2.7)

Let M be a pseudo-Riemannian surface in a three-dimensional Minkowski spaceE
3
1. The

mapG : M → Q2(ε) ⊂ E3
1 which sends each point ofM to the unit normal vector toM

at the point is called theGauss mapof surfaceM, whereε(= ±1) denotes the sign of the
vector fieldG andQ2(ε) is a 2-dimensional space form as follows:

Q2(ε) =
{

S2
1(1) in E3

1, if ε = 1;
H 2(−1) in E3

1, if ε = −1.

It is well known that in terms of local coordinates{xi} of M the Laplacian can be written as

1 = − 1√|G|
∑
i,j

∂

∂xi

(√
|G|gij ∂

∂xj

)
, (2.8)

whereG = det(gij ), (g
ij ) = (gij )

−1 and(gij ) are the components of the metric ofM with
respect to{xi}.

Now, we define a ruled surfaceM in a three-dimensional Minkowski spaceE3
1. Let I be

an open interval in the real lineR. Letα = α(s) be a curve inE3
1 defined onI andβ = β(s)

a transversal vector field alongα. For an open intervalJ of R we have the parametrization
for M

x = x(s, t) = α(s) + tβ(s), s ∈ I, t ∈ J. (2.9)
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The curveα = α(s) is called abase curveandβ = β(s) a director curve. In particular, if
β is constant, the ruled surface is said to becylindrical, andnon-cylindricalotherwise.

First of all, we consider that the base curveα is space-like or time-like. In that case, the
director curveβ can be naturally chosen so that it is orthogonal toα. Furthermore, we have
ruled surfaces of five different kinds according to the character of the base curveα and the
director curveβ as follows: If the base curveα is space-like or time-like, then the ruled
surfaceM is said to be of typeM+ or typeM−, respectively. Also, the ruled surface of type
M+ can be divided into three types. Whenβ is space-like, it is said to be of typeM1+ or
M2+ if β ′ is non-null or light-like, respectively. Whenβ is time-like,β ′ must be space-like
according to Lemma 2.1. In this case,M said to be of typeM3+. On the other hand, for the
ruled surface of typeM−, it is also said to be of typeM1− orM2− if β ′ is non-null or light-like,
respectively. Note that in the case of typeM− the director curveβ is always space-like (cf.
[9,14]). The ruled surface of typeM1+ or M2+ (resp.M3+, M1− or M2−) is clearly space-like
(resp. time-like).

But, if the base curveα is a light-like curve and the vector fieldβ alongα is a light-like
vector field, then the ruled surfaceM is called anull scroll. In particular, a null scroll with
Cartan frame is said to be aB-scroll [11]. It is also a time-like surface.

3. Some examples

Before going into the study of ruled surfaces with the condition1G = f G, let us
see some examples of surfaces inE3

1 satisfying that condition. They will be parts of our
classifications of ruled surfaces.

Example 3.1(Helicoid of the 1st kind). For constantsa andb with |a| > |b| > 0, we
consider the surfaceM in E3

1 defined by

x(s, t) = (−bs, (t + a) coss, (t + a) sins),

wheret < min(−a − b, −a + b) or t > max(−a − b, −a + b).
This parametrization defines a non-cylindrical ruled surface of typeM1+ in E3

1, which is
called a helicoid of the 1st kind as space-like surface. In this case, the Gauss mapG is given
by

G = 1√
(t + a)2 − b2

(t + a, b sins, −b coss).

The Laplacian1G of the Gauss mapG is obtained as

1G = −2b2

((t + a)2 − b2)2
G.

Example 3.2(Helicoid of the 2nd kind). For constantsa andb with |b| > |a|, we consider
the surfaceM in E3

1 defined by
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x(s, t) = ((t + a) sinhs, (t + a) coshs, −bs),

where min(−a − b, −a + b) < t < max(−a − b, −a + b).

This parametrization defines a non-cylindrical ruled surface of typeM1+ in E3
1, which is

called a helicoid of the 2nd kind as space-like surface. The Gauss mapG for it is given by

G = 1√
b2 − (t + a)2

(−b coshs, −b sinhs, t + a)

and the Laplacian1G of the Gauss mapG is derived as

1G = −2b2

(b2 − (t + a)2)2
G.

Example 3.3(Conjugate of Enneper’s surface of the 2nd kind). The surface inE
3
1 defined

by

x(s, t) =
(

1

6
s3 + ts, −1

6
s3 − ts+ s,

1

2
s2 + t

)

is a non-cylindrical ruled surface of typeM2+, which is said to be a conjugate of Enneper’s
surface of the 2nd kind as space-like surface. The Gauss mapG is obtained by

G = 1√−2t + 1

(
−1

2
s2 + t − 1,

1

2
s2 − t, −s

)
.

The Laplacian1G of the Gauss mapG can be expressed as

1G = −2

(−2t + 1)2
G, t <

1

2
.

Example 3.4(Helicoid of the 1st kind). For constantsa andb satisfying|a| < |b|, we
consider the surfaceM in E3

1 defined by

x(s, t) = (−bs, (t + a) coss, (t + a) sins),

where min(−a − b, −a + b) < t < max(−a − b, −a + b).

This parametrization defines a non-cylindrical ruled surface of typeM1− in E3
1, which is

called a helicoid of the 1st kind as time-like surface. Similarly to Example 3.1, we can get
the Laplacian1G of the Gauss mapG

1G = −2b2

(b2 − (t + a)2)2
G.

Example 3.5(Helicoid of the 2nd kind). For constantsa andb with |a| > |b| > 0, we
consider the surfaceM in E3

1 defined by

x(s, t) = ((t + a) sinhs, (t + a) coshs, −bs),

wheret < min(−a − b, −a + b) or t > max(−a − b, −a + b).
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This parametrization defines a non-cylindrical ruled surface of typeM1− in E3
1, which is

said to be a helicoid of the 2nd kind as time-like surface. The Laplacian1G of the Gauss
mapG is determined by

1G = −2b2

((t + a)2 − b2)2
G.

Example 3.6(Helicoid of the 3rd kind). For constantsa andb satisfying|a| < |b|, we
consider the surfaceM in E3

1 defined by

x(s, t) = ((t + a) coshs, bs, (t + a) sinhs),

where min(−a − b, −a + b) < t < max(−a − b, −a + b).
This parametrization defines a non-cylindrical ruled surface of typeM3+ in E3

1, which is
called a helicoid of the 3rd kind as time-like surface. In this case, the Laplacian1G of the
Gauss mapG can be expressed as

1G = 2b2

(b2 − (t + a)2)2
G.

Example 3.7(Conjugate of Enneper’s surface of the 2nd kind). The surface inE
3
1 defined

by

x(s, t) =
(

1

6
s3 + ts+ s, −1

6
s3 − ts,

1

2
s2 + t

)

is a non-cylindrical ruled surface of typeM2−, which is said to be a conjugate of Enneper’s
surface of the 2nd kind as time-like surface. The Laplacian1G of the Gauss mapG is given
by

1G = −2

(2t + 1)2
G, t > −1

2
.

Example 3.8(B-scroll, cf. [1]). Letγ = γ (s) be a light-like curve inE3
1 with Cartan frame

{A, B, C}, i.e.,A, B, C are vector fields alongγ in E3
1 satisfying the following conditions:

〈A, A〉 = 〈B, B〉 = 0, 〈A, B〉 = 1, 〈A, C〉 = 〈B, C〉 = 0, 〈C, C〉 = 1,

γ ′ = A, C′ = −aA− k(s)B,

a being a constant andk(s) a function vanishing nowhere.
Let x = x(s, t) = γ (s) + tB(s). Then, it is a time-like surface inE3

1, which is called a
B-scroll [11]. The Gauss mapG is given by

G(s, t) = −atB(s) + C(s).

As for the shape operatorS we have that

Gs := ∂G

∂s
= −axs − k(s)xt , Gt := ∂G

∂t
= −axt .
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SoS is written down, relative to the usual frame{xs, xt }, as(
a 0
k(s) a

)
.

Thus, it has constant mean curvatureα = a and constant Gaussian curvatureK = a2.
Furthermore, the Laplacian1G of the Gauss mapG can be expressed as

1G = λG, λ = −2a2.

On the other hand, aB-scroll is minimal if and only if it is flat.

Remarks.
1. All surfaces given in the above examples are congruence to surfaces described in [16].
2. There are surfaces satisfying the condition (1.2) as cylindrical ruled surfaces. For ex-

ample, (1) a non-degenerated plane, (2) a hyperbolic cylinderH
1 × R, (3) a Lorentz

circular cylinderS1
1 ×R, (4) a circular cylinderR1

1 ×S1 of index 1(for details, see [9]).

4. Classification theorems

In this section, we will classify the ruled surfaces in terms of pointwise 1-type Gauss
map.

Suppose that the ruled surfacesM satisfy the condition (1.2). Then, the tangential com-
ponent of1G vanishes, i.e.,

1G − ε〈1G, G〉G = 0. (4.1)

We divide ruled surfaces inE3
1 into three typical types according to the character of the base

curveα and the vector fieldβ, i.e., cylindrical ruled surfaces, non-cylindrical ruled surfaces
and null scrolls.

Theorem 4.1. The only cylindrical ruled surfaces with space-like or time-like base curve
in a three-dimensional Minkowski space with pointwise 1-type Gauss map are an open part
of one of the following surfaces:
1. a Euclidean plane,
2. a Minkowski plane,
3. the hyperbolic cylinder,
4. the Lorentz circular cylinder,
5. the circular cylinder of index1.

Proof. LetM be a cylindrical ruled surface inE3
1, i.e.,α = α(s) is a space-like or time-like

smooth curve andβ = β(s) a space-like or time-like unit constant vector field alongα or
orthogonal toα ands the arc-length ofα. Then,M is parametrized by

x = x(s, t) = α(s) + tβ

such that〈α′, α′〉 = ε1(= ±1), 〈α′, β〉 = 0, 〈β, β〉 = ε2(= ±1).
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Also the cylindrical ruled surfaceM is only of typeM1+, M3+ or M1−.
In order to prove the theorem, we split it into two cases.
Case 1: LetM be a cylindrical ruled surface of typeM1+ orM1−, i.e.,ε2 = 1. Performing a

Lorentz transformation, we may assume thatβ = (0, 0, 1) without loss of generality. Thenα
may be regarded as the plane curveα(s) = (α1(s), α2(s), 0). The Gauss map ofM is defined
by G = α′ × β = (−α′

2, −α′
1, 0), where the prime denotes the derivative with respect to

s. Since the induced pseudo-Riemannain metric is given by〈xs, xs〉 = ε1, 〈xs, xt 〉 = 0 and
〈xt , xt 〉 = 1, the Laplacian1G of the Gauss mapG is obtained by1G = (ε1α

′′′
2 , ε1α

′′′
1 , 0).

Then, (1.2) implies that we have the following system of differential equations:

ε1α
′′′
2 (s) = −f (s, t)α′

2(s), ε1α
′′′
1 (s) = −f (s, t)α′

1(s). (4.2)

From this, we see thatf is a function ofs only. In order to solve the above equations we
first consider the surfaceM of typeM1+, i.e.,ε1 = 1. So we get〈α′, α′〉 = −α′2

1 +α′2
2 = 1.

Accordingly, we may putα′
1 andα′

2 as follows:

α′
1 = sinhθ, α′

2 = coshθ,

whereθ = θ(s). Putting these into (4.2), we have

θ ′′ sinhθ + (θ ′2 + f (s, t)) coshθ = 0, (θ ′2 + f (s, t)) sinhθ + θ ′′ coshθ = 0,

which implies

θ ′′ = 0, f (s, t) = −θ ′2.

Therefore,f is a constant. Using Proposition 3.1 of [9], we conclude thatM is an open
portion of a Euclidean plane and the hyperbolic cylinder.

Next, we are concerned with the ruled surfaceM of type M1−, i.e., ε1 = −1. Since
〈α′, α′〉 = −α′2

1 + α′2
2 = −1, we may put

α′
1 = coshθ, α′

2 = sinhθ

whereθ = θ(s). By the similar discussion as above, we can get

(θ ′2 − f (s, t)) sinhθ + θ ′′ coshθ = 0, θ ′′ sinhθ + (θ ′2 − f (s, t)) coshθ = 0,

from which,

θ ′′ = 0, f (s, t) = θ ′2.

Thus,f is also a constant. It shows thatM is an open portion of a Minkowski plane and
the Lorentz circular cylinder according to Proposition 3.1 of [9].

Case 2: Let M be a cylindrical ruled surface of typeM3+, i.e., ε1 = 1, ε2 = −1. As
in the previous case, by an appropriate rigid motion, we may assumeβ = (1, 0, 0) and
α(s) = (0, α2(s), α3(s)) without loss of generality. The Gauss mapG of M is given by
G = (0, α′

3, −α′
2) and the Laplacian1G of the Gauss mapG is obtained by1G =

(0, −α′′′
3 , α′′′

2 ). Furthermore, the condition (1.2) implies

α′′′
3 = −f (s, t)α′

3, α′′′
2 = −f (s, t)α′

2 (4.3)
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Since〈α′, α′〉 = α′2
2 + α′2

3 = 1, we may put

α′
2 = cosθ, α′

3 = sinθ

whereθ = θ(s). Similarly to Case 1, we can obtain thatf is a constant. Thus,M is an open
part of a Minkowski plane and the circular cylinder of index 1 according to Proposition 3.1
of [9]. �

Theorem 4.2. Let M be a non-cylindrical ruled surface with space-like or time-like base
curve in a three-dimensional Minkowski space. Then, the Gauss map is of pointwise 1-type
if and only if M is an open part of one of the following surfaces:
1. the helicoid of the1st kind as space-like or time-like surface,
2. the helicoid of the2nd kind as space-like or time-like surface,
3. the helicoid of the3rd kind as space-like or time-like surface,
4. the conjugate of Enneper’s surfaces of the2nd kind as space-like or time-like surface.

Proof. We consider two cases separately.
Case 1: Let M be a non-cylindrical ruled surface of one of the three typesM1+, M3+ or

M1− according to the character of the base curveα and the director curveβ.
1. α = α(s) is space-like andβ = β(s) is space-like,
2. α = α(s) is space-like andβ = β(s) is time-like,
3. α = α(s) is time-like andβ = β(s) is space-like,

wheres is the arc-length of the director curveβ.
We also express the ruled surfaceM is parametrized by, up to a rigid motion,

x = x(s, t) = α(s) + tβ(s) (4.4)

such that〈α′, β〉 = 0, 〈β, β〉 = ε2(= ±1) and〈β ′, β ′〉 = ε3(= ±1). And we have the
natural frame{xs, xt } given byxs = α′ + tβ ′ andxt = β. For later use, we define smooth
functionsq, u andv as follows:

q = ‖xs‖2 = ε4〈xs, xs〉, u = 〈α′, β ′〉, v = 〈α′, α′〉, (4.5)

whereε4(= ±1) is the sign of the vectorxs . Then, the induced pseudo-Riemannain metric
onM is obtained by〈xs, xs〉 = ε4q, 〈xs, xt 〉 = 0 and〈xt , xt 〉 = ε2. If we make use of (2.8)
together with such functionsq, u andv, the Laplacian1 of M can be expressed as follows
[14]:

1 = −ε4

(
1

q

∂2

∂s2
− 1

2

1

q2

∂q

∂s

∂

∂s

)
− ε2

(
∂2

∂t2
+ 1

2

1

q

∂q

∂t

∂

∂t

)
. (4.6)

Furthermore, the Gauss mapG of M is obtained by

G =
(

1

‖xs × xt‖
)

xs × xt = q−1/2(A + tB) (4.7)

and the smooth functionq is given by

q = ε4(ε3t
2 + 2ut + v), (4.8)
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where we putA = α′ ×β andB = β ′ ×β. By a straightforward computation, the Laplacain
1G of the Gauss mapG with the help of (4.7) turns out to be

1G = {2ε2ε3ε4q
−1 − 2ε2(ε3t + u)2q−2 − ε4(2u′t + v′)2q−3

+1
2(2u′′t + v′′)q−2}G + 1

2q−5/2{2ε2ε4q(−ε3A + uB) − 2ε4q(A′′ + tB′′)
+3(2u′t + v′)(A′ + tB′)}. (4.9)

The direct computation of the left-hand side of (4.1) gives a polynomial int with functions
of s as the coefficients by adjusting the power of the functionq and thus they must be zero.
we have then

B ′′ − εε3ε4 < B ′′, B > B = 0, (4.10)

A′′ + (ε2ε3 − εε3ε4〈B ′′, B〉)A + 4ε3uB′′ − 3εε3u
′B ′ − (ε2u + εε3ε4〈A′′, B〉

+ εε3ε4〈A, B ′′〉 + 2εε4u〈B, B ′′〉)B = 0, (4.11)

8ε3ε4uA′′ − 6εε3ε4u
′A′ + (8ε2ε4u − 2εε3〈A′′, B〉 − 2εε3〈A, B ′′〉 − 4εu〈B, B ′′〉)A

+(4ε3ε4v + 8ε4u
2)B ′′ − ε(12ε4uu′ + 3ε3ε4v

′)B ′ − (8ε2ε3u
2 + 2εε3u

2

−2εv + 6εε2u
′2 + 2εε3〈A, A′′〉 + 4εu〈A′′, B〉 + 4εu〈A, B ′′〉

+2εv〈B ′′, B〉)B = 0, (4.12)

ε4(4ε3v+8u2)A′′−εε4(12uu′ + 3ε3v
′)A′ + (4ε2ε4v + 8ε2ε3ε4u

2 + 2εv − 2εε3u
2

−6εε2u
′2 − 2εε3〈A, A′′〉 − 4εu〈A′′, B〉 − 4εu〈A, B ′′〉

−2εv〈B ′′, B〉)A + 8ε4uvB′′ − εε4(6u′v + 6uv′)B ′ − (4ε2ε3ε4uv

+8ε2ε4u
3 − 4εε3uv + 4εu3 + 6εε2u

′v′+4εu〈A, A′′〉+2εv〈A′′, B〉
+2εv〈A, B ′′〉)B=0, (4.13)

16ε4uvA′′ − εε4(12u′v + 12uv′)A′ + (16ε2ε3ε4uv + 8εε3uv − 8εu3

−12εε2u
′v′ − 8εu〈A, A′′〉 − 4εv〈A′′, B〉 − 4εv〈A, B ′′〉)A + 4ε4v

2B ′′

−6εε4vv′B ′ − (16ε2ε4u
2v − 4εε3v

2 + 4εu2v

+3εε2v
′2 + 4εv〈A, A′′〉)B = 0, (4.14)

4ε4v
2A′′ − 6εε4vv′A′ + (4ε2ε3ε4v

2 + 4εε3v
2 − 4εu2v − 3εε2v

′2 − 4εv〈A, A′′〉)A
−4ε2ε4uv2B = 0. (4.15)

It follows from (4.10) that

〈B ′′, B ′〉 = 0, (4.16)

i.e., 〈B ′, B ′〉 = c for some constantc. This implies

〈B ′′, B〉 = −c. (4.17)
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Thus, (4.10) can be rewritten in the form

B ′′ = −εε3ε4cB, (4.18)

which implies

〈A, B ′′〉 = εε2ε3ε4cu. (4.19)

Consequently, using (4.16),(4.17),(4.18) and (4.19) we can eliminateA′′, A′ andB ′ so that

(v′2 − 4ε3u
′2v)A + (8uu′2v − 4ε3u

′vv′)B = 0, (4.20)

(4u′vv′ − 2uv′2)A + (vv′2 − 4ε3u
′2v2)B = 0. (4.21)

First, we suppose thatA andB are linearly dependent at somes ∈ I . Then there are
constantsκ1 andκ2 such thatα′ − κ1β

′ = κ2β. By using the properties ofα andβ, we
getu = ε3κ1 andv = ε3κ

2
1, which is a contradiction by the definition of non-vanishing

functionq. Thus,A andB are linearly independent for alls. From (4.20) and (4.21), we
have

v′2 − 4ε3u
′2v = 0, (4.22)

u′v(2uu′ − ε3v
′) = 0, (4.23)

2u′vv′ − uv′2 = 0, (4.24)

vv′2 − 4ε3u
′2v2 = 0. (4.25)

Suppose that the open subsetU = {p ∈ M|u′(p) 6= 0} is not empty. Eq. (4.23) gives

v′ = 2ε3uu′ on U, (4.26)

which implies from (4.22) thatu2 = ε3v on U . This is also a contradiction. Thus,U is
empty, in other words,u′ = 0. Furthermore, from (4.22) we also havev′ = 0. If we take
the scalar product withβ in the Eq. (4.18)), then we have〈β ′′ × β ′, β〉 = 0. Hence, there
are smooth functionsκ1 andκ2 such thatβ = κ1β

′ + κ2β
′′. It implies thatβ andβ ′′ are

parallel. Also, fromu′ = 0 andv′ = 0 we get

〈α′′, β ′〉 = 0, 〈α′′, α′〉 = 0. (4.27)

For the vector fieldsα′, β, β ′ andα′′, we may put

α′′ = κ1α
′ + κ2β

′ + κ3β

for κ1, κ2 andκ3 are smooth functions. Using (4.27), we see thatα′′ andβ are parallel.
On the other hand, by definition the mean curvature vector fieldH of M is obtained as

follows:

H = 1
2ε4q

−3/2〈(α′ + tβ ′) × β, α′′ + tβ ′′〉.
Sinceβ ′′, α′′ andβ are parallel to each other, it is easily proved thatH vanishes identically.
Consequently, by using the classification theorem of a ruled minimal surface inE

3
1 [16] we
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conclude that the surface of typeM1+ (resp.M1−) are an open part of the helicoid of the 1st
kind and the helicoid of the 2nd kind as space-like surface (resp. time-like surface), and the
surface of typeM3+ is an open part of the helicoid of the 3rd kind. The converse is obvious.

Case 2: Let M be a non-cylindrical ruled surface of typeM2+ or M2−. Then, the surface
M is parametrized by

x(s, t) = α(s) + tβ(s)

such that〈β, β〉 = 1, 〈α′, β〉 = 0, 〈α′, α′〉 = ε1(= ±1) andβ ′ is null.
It is easy to get the Gauss mapG of the surfaceM as

G = 1

||(α′ + tβ ′) × β|| (α
′ + tβ ′) × β.

We also put functionsq andu as before by

q = ||xs ||2 = ε4〈xs, xs〉, u = 〈α′, β ′〉,
which give

q = ε4(2ut + ε1), G = q−1/2(A + tB), (4.28)

where we putA = α′ × β andB = β ′ × β and the region oft is chosen so thatq > 0. The
Laplacian1 of M can be expressed as [14]

1 = −ε4

(
−1

2

1

q2

∂q

∂s

∂

∂s
+ 1

q

∂2

∂s2

)
−

(
1

2

1

q

∂q

∂t

∂

∂t
+ ∂2

∂t2

)
. (4.29)

Using (4.28) and (4.29) we can obtain by a direct computation

1G = (−2u2q−2 + u′′tq−2 − 4ε4u
′2t2q−3)G

+q−5/2{ε4uBq+ 3u′t (A′ + tB′) − ε4(A
′′ + tB′′)q}. (4.30)

Suppose thatM is of pointwise 1-type Gauss map. Similarly to Case 1, using (4.1) and
(4.30) we have

εu〈B, B ′′〉B = 0, (4.31)

2εu〈B, B ′′〉A − 4ε4u
2B ′′ + 6ε4uu′B ′

+ ε(3u′2 + 2u〈A′′, B〉 + 2u〈A, B ′′〉 + ε1〈B, B ′′〉)B = 0, (4.32)

4ε4u
2A′′ − 6ε4uu′A′ − ε(3u′2 + 2u〈A′′, B〉 + 2u〈A, B ′′〉 + ε1〈B, B ′′〉)A

+ 4ε1ε4uB′′ − 3ε1ε4u
′B ′ − (4ε4u

3 + 2εu3 + 2εu〈A, A′′〉 + εε1〈A′′, B〉
+ εε1〈A, B ′′〉)B = 0, (4.33)

4ε1ε4A
′′ − 3ε1ε4u

′A′ − ε(2u3 + 2u〈A, A′′〉 + ε1〈A′′, B〉 + ε1〈A, B ′′〉)A + ε4B
′′

− (4ε1ε4u
2 + εε1u

2 + εε1〈A, A′′〉)B = 0, (4.34)
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A′′ − εε1ε4(u
2 + 〈A, A′′〉)A − uB = 0. (4.35)

We easily see thatB is non-zero everywhere. In fact, ifB is zero at some points, thenβ ′

andβ are parallel. It contradicts the property ofβ andβ ′. Consider a subsetU = {p ∈
M|〈B, B ′′〉(p) 6= 0}. If U is not empty, from (4.31) we haveu = 0 onU . And from (4.32)
we also get〈B, B ′′〉B = 0 onU , which is a contradiction onU . Therefore,U must be empty.
Thus, we have

〈B, B ′′〉 = 0. (4.36)

Consequently, substituting (4.36) into (4.31), (4.32), (4.33), (4.34) and (4.35), we can elim-
inateA′′, B ′′, A′ andB ′ so that

2ε1uu′2A − u′2B = 0. (4.37)

We now suppose thatA and B are linearly dependent at somes ∈ I . Then, there are
constantsκ1 andκ2 such thatα′ − κ1β

′ = κ2β. By using the properties ofα andβ, we
can obtainα′ = κ1β

′, which is a contradiction. Thus,A andB are linearly independent
for all s. From (4.37) we show thatu′ = 0. Since〈B, B ′′〉 = 0 and〈B, B ′〉 = 0, we have
〈B, B ′′〉 = 〈β ′′, β ′′〉 = 0, i.e.,β ′′ is light-like or zero. Ifβ ′′ is light-like, there is a non-zero
smooth functionκ such thatβ ′′ = κβ ′ by Lemma 2.1. Hence, we haveβ = F(s)C, where
C = (c1, c2, c3) is a constant light-like vector field inE3

1 andF(s) is a positive smooth
function (cf. [14]). However, there is no such vector fieldβ satisfying〈β, β〉 = 1. After
all, β ′′ is the zero vector. As in the previous case, if we examine the relationship among
α′, β, β ′ andα′′ we find thatα′′ andβ are parallel. Similarly to Case 1, the character ofα

andβ makes the mean curvature vector fieldH vanish everywhere.
Hence, in this case, the surfaces of typesM2+ (resp.M2−) is an open part of the conjugate of

Enneper’s surfaces of the 2nd kind as space-like surface (resp. time-like surface) according
to Theorems 3 and 4 of [16]. Furthermore, the converse also holds. Thus, this completes
the proof. �

Theorem 4.3. Let M be a null scroll with pointwise 1-type Gauss map in a three-dimensional
Minkowski space. Then, M is an open part of one of the following surfaces:
1. a Minkowski plane,
2. a flat B-scroll ifB ′ is light-like,
3. a non-flat B-scroll ifB ′ is non-null.

Proof. Let α = α(s) be a light-like curve inE3
1 andB = B(s) be a light-like vector field

alongα. Then, the null scrollM is parametrized by

x = x(s, t) = α(s) + tB(s)

such that〈α′, α′〉 = 0, 〈B, B〉 = 0 and〈α′, B〉 = 1.
We have the natural frame{xs, xt } given by

xs = α′ + tB′, xt = B. (4.38)
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Again, we define smooth functionsq, u andv as follows:

q = ||xs ||2 = 〈xs, xs〉, u = 〈α′, B ′〉, v = 〈B ′, B ′〉 (4.39)

Similarly as before, the Laplacian1 of M can be given as follows [13]:

1 = −2
∂2

∂s∂t
+ ∂q

∂t

∂

∂t
+ q

∂2

∂t2
. (4.40)

Furthermore, the Gauss mapG is determined by

G =
(

1

‖xs × xt‖
)

(xs × xt ) = C + tD, (4.41)

where we putC = α′ × B andD = B ′ × B.
Suppose thatM is of pointwise 1-type Gauss map. Then, (1.2) together with (4.40) and

(4.41) gives

2D′ + (ft − 2u − 2vt)D + fC = 0. (4.42)

Taking the scalar product withC′ andD′ in (4.42), respectively, we obtain the following
equations:

v′ + fvt − 2v2t = 0, (4.43)

2v2 − fv = 0. (4.44)

Consider an open subsetU = {p ∈ M|v(p) 6= 0}. We suppose thatU is not empty. Then,
on a componentC of U , we havef = 2v by (4.44). Together with (4.43), we see thatv is a
constant. Consequently, by continuity,C must be the whole spaceM. In this case, we have
null frame field{α′, B, C} in E3

1 satisfying the following conditions:

〈α′, α′〉 = 〈B, B〉 = 0, 〈α′, B〉 = 1, 〈α′, C〉 = 〈B, C〉 = 0,

〈C, C〉 = 1, α′′ = −uα′ + 〈α′′, α′ × B〉C, B ′ = uB+ 〈α′ × B, B ′〉C,

C′ = −〈α′ × B, B ′〉α′ − 〈α′′, α × B〉B.

Using (1.2) andf = 2v, we obtain that 2v = 〈α′ × B, B ′〉 is a constant. Thus,M is a
B-scroll (cf. [1]).

If v is identically zero, thenB ′ is zero or light-like. Suppose thatB ′ is the zero vector,
i.e., B is a constant vector. ThenD = 0, which gives1G = 0. Consequently,M is a
Minkowski plane. IfB ′ is light-like, thenB ′ andB are linearly dependent by Lemma 2.1.
Thus we haveD = 0, which implies1G = 0. In that case, we see that the mean curvature
vector fieldH vanishes identically and the Gaussian curvature is also zero. Consequently,
M is a flatB-scroll (see Example 3.8). This completes the proof. �

Combining the results of Theorems 4.1, 4.2 and 4.3, we have

Theorem 4.4(Classification).Let M be a space-like ruled surface in a three-dimensional
Minkowski space. Then, the Gauss map is of pointwise 1-type if and only if M is an open
part of one of the following surfaces:
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1. a Euclidean plane,
2. the hyperbolic cylinder,
3. the helicoid of the 1st kind,
4. the helicoid of the 2nd kind,
5. the conjugate of Enneper’s surface of the 2nd kind.

Theorem 4.5(Classification).Let M be a time-like ruled surface in a three-dimensional
Minkowski space. Then, the Gauss map is of pointwise 1-type if and only if M is an open
part of one of the following surfaces:
1. a Minkowski plane,
2. the Lorentz circular cylinder,
3. the circular cylinder of index1,
4. the helicoid of the1st kind,
5. the helicoid of the2nd kind,
6. the helicoid of the3rd kind,
7. the conjugate of Enneper’s surfaces of the2nd kind,
8. a flat B-scroll ifB ′ is light-like,
9. a non-flat B-scroll ifB ′ is non-null.

References

[1] L.J. Alı́as, A. Ferrández, P. Lucas, M.A. Meroño, On the Gauss map of B-scrolls, Tsukuba J. Math. 22 (1998)
371–377.

[2] C. Baikoussis, D.E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992) 355–359.
[3] C. Baikoussis, B.-Y. Chen, L. Verstraelen, Ruled surfaces and tubes with finite type Gauss map, Tokyo J.

Math. 16 (1993) 341–348.
[4] C. Baikoussis, B.-Y. Chen, L. Verstraelen, Surfaces with Finite Type Gauss Map, Geometry and Topology of

Submanifolds, vol. IV, World Scientific, Singapore, 1992, pp. 214–216.
[5] B.-Y. Chen, On submanifolds of finite type, Soochow J. Math. 9 (1983) 65–81.
[6] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
[7] B.-Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996) 117–337.
[8] B.-Y. Chen, P. Piccinni, Submanifolds with finite type Gauss map, Bull. Aust. Math. Soc. 35 (1987) 161–186.
[9] S.M. Choi, On the Gauss map of ruled surfaces in a three-dimensional Minkowski space, Tsukuba J. Math.

19 (1995) 285–304.
[10] M. Choi, Y.H. Kim, New characterization of the helicoid, submitted for publication.
[11] L.K. Graves, Codimension one isometric immersions between Lorentz spaces, Trans. Am. Math. Soc. 252

(1979) 367–392.
[12] W. Greub, Linear Algebra, Springer, New York, 1963.
[13] D.-S. Kim, Y.H. Kim, S.B. Lee, D.W. Yoon, Classification of ruled surfaces with 1-type Gauss map in

Minkowski spaces, submitted for publication.
[14] Y.H. Kim, D.W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math,

submitted for publication.
[15] O. Kobayashi, Maximal surfaces in the three-dimensional Minkowski spaceL3, Tokyo J. Math. 6 (1983)

297–309.
[16] I.V. de Woestijne, Minimal Surfaces in the Three-dimensional Minkowski Space, Geometry and Topology

of Submanifolds, vol. II, World Scientific, Singapore, 1990, pp. 344–369.


